

Date Planned://_ Actual Date of Attempt://_				Daily	Daily Tutorial Sheet-1 JEE Main (Archive)			Expected Duration : 90 Min Exact Duration :		
				JEE						
1.	1 M N (A) (C)	Not a buffer	ICl are present solution and ution with ph	l with pH < 7	us solut (B) (D)	ion. The solution Not a buffer A buffer solu	solution v	_	(1991)	
2.	Specie	Species acting as both Bronsted acid and base is:								
	(A)	HSO_4^-	(B)	${ m Na_2CO_3}$	(C)	NH_3	(D)	OH^-	\odot	
3.	If the solubility of an aqueous solution of $Mg(OH)_2$ be X mol It^{-1} than K_{sp} of $Mg(OH)_2$ is:								(1992)	
	(A)	$4X^3$		108 X ⁵	(C)	$27\mathrm{X}^4$	(D)	9X		
4.	The se	dubility of a cr	poringly colul	ble solt AD in	water	is 1.0×10 ⁻⁵ mo	oli−l Ito	colubility prod	not is:	
4.	(A)	лавшаў ога s _r		10^{-10}	(C)	4×10^{-15}	(D)		(1993)	
=				ghest proton a		4 ^ 10	(D)	4.10		
5.	(A)	$^{\circ}$ NH $_{_{3}}$	_	gnest proton a PH ₃	(C)	$H_{2}O$	(D)	H ₂ S	(1994)	
6.		statement is		3	` ,	2	` ,	2	(1995)	
	(A)	_								
	(B)	96500 coulomb deposits 1 g equivalent of copper								
	(C)	Conjugate base of $H_2PO_4^-$ is HPO_4^{2-}								
(D) $pH + pOH = 14$ for all aqueous solution										
7.	When rain accompanied by a thunderstorm, the collected rain water will have a pH. (1996)									
(A) Influenced by occurrence of thunderstorm										
	(B) Depends upon the amount of dust in water							\odot		
(C) Slightly lower than that of rain water without thunderstorm(D) Slightly higher than that when thunderstorm is not there										
0									(1006)	
8.	(A)	HPO $_4^{2-}$		P_2O_5	(C)	H ₃ PO ₄	(D)	PO_4^{3-}	(1996)	
		•				0 1	(D)	PO_4		
9.	K_{sp} of MX_4 and solubility of MX_4 is S mol/L is related by:							(1997)		
	(A)	$S = [K_{sp}/25]$				$S = [128 \text{ K}_{sp}]$	1 / 4		$oldsymbol{f e}$	
	(C)	S = $[256 \text{ K}_{sp}]^{1/5}$ (D) $S = [K_{sp}/128]^{1/4}$								
10.	The solubility product of a salt having general formula MX_2 in water is 4×10^{-12} . The concentration of									
	M^{2+} ions in the aqueous solution of the salt is:								(1998)	
	(A)	$2 \times 10^{-6} \mathrm{M}$	(B)	$1 \times 10^{-4} \text{ M}$	(C)	$1.6 \times 10^{-4} \text{ M}$	(D)	$4.0 \times 10^{-6} \text{ M}$		

 3.98×10^{8}

(A)

11.

(C)

 $3.68\!\times\!10^8$

Hydrogen ion concentration in mol/L in a solution of pH = 5.4 will be:

 $3.88\!\times\!10^6$

(B)

 3.98×10^{-6}

(D)

(2000)

 \odot

(2005)

7.0

(D)

12 .	The conjugate base of OH ⁻	is:	(2000)

(A) O_2 (B) H_2O (C) O^- (D) O^{2-}

2.5

13. The pK_a of a weak acid (HA) is 4.5. The pOH of an aqueous buffered solution of HA in which 50% of the acid is ionized is: (2001)

(C)

9.5

14. In a saturated solution of the sparingly soluble strong electrolyte $AgIO_3$ (molecular mass = 283) the

equilibrium which sets in is

 $AgIO_3(s) \rightleftharpoons Ag^+(aq) + IO_3^-(aq)$

(B)

(A)

4.5

If the solubility product constant K_{sp} of $AgIO_3$ at a given temperature is 1.0×10^{-8} , what is the mass of $AgIO_3$ contained in 100 mL of its saturated solution? (2001)

- (A) $28.3 \times 10^{-2} g$ (B) $28.3 \times 10^{-3} g$ (C) $1.0 \times 10^{-7} g$ (D) $1.0 \times 10^{-4} g$ (E)

 15. The pK_a of a weak acid, HA, is 4.80. The pK_b of a weak base, BOH, is 4.78. The pH of an aqueous
 - solution of the corresponding salt, BA, will be:

 (A) 8.58 (B) 4.79 (C) 7.01 (D) 9.22